
Lingua Project
(13) Metaprograms’ development in Lingua (2)

(Sec. 9.4.6 and 9.5.1)

Andrzej Jacek Blikle

May 10th, 2025

The book "Denotational Engineering" may be downloaded from:

https://moznainaczej.com.pl/what-has-been-done/the-book

Rules for structured instructions

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 2

pre (prc and-k vex) : sin-1 post poc

pre (prc and-k (not-k vex)) : sin-2 post poc

prc  (vex or-k (not-k vex))

pre prc if vex then sin-1 else sin-2 post poc

Lemma 9.4.6-1 Rule for conditional branching if-then-else-fi

pre (inv and-k vex) : sin post inv

limited replicability of (asr vex rsa ; sin) if inv

prc  inv

inv  (vex or-k (not-k vex))

inv and-k (not-k vex))  poc

pre prc : while vex do sin od post poc

Lemma 9.4.6-2 Rule for loop while-do-od

we have to find an

invariant condition

inv

Rule for assignment instructions

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 3

Lemma 9.4.6-3 @-tautology

pre sin @ con

 sin

post con

Initial program where + and < are integer operations

pre x := y+1 @ 2*x < 10

 x := y+1

post 2*x < 10
Conclusions (of the correctness of our program):

x, y – declared as integer variables

y+1, 2*x – evaluate cleanly

Constructed program

pre (x is integer) and-k 2*(y+1) < 10

 x := y+1

post 2*x < 10

replacement of a condition

by a weakly equivalent one

(no strong equivalence!)

A proved lemma:

x := y+1 @ 2*x < 10  (x is integer) and-k 2*(y+1) < 10

A general programmer’s step

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 4

In a general case, building a program in Lingua may be seen as a sequence of the

following steps:

 given

 prc – a precondition

 poc – a postcondition,

 create

 rei – a reinforcement of precondition

 spr – a specprogram

 such that

 pre prc and-k rei : spr post poc – is correct

In a general case:

 rei = und-rei and-k der-rei

und-rei – underivable condition; must be conjunctively added to the preconditions

 and postconditions of preceding programs,

der-rei – derivable condition; the preconditions and postconditions of preceding

 programs must be appropriately strengthened.

A procedural programmer’s step (1)

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 5

Programmer’s tasks for a procedure call:

 given

 prc-call – a precondition of the (future) call

 poc-call – a postcondition of the (future) call

 create

 rei – a precondition reinforcement

 proc myProc (val fpa-v ref fpa-r begin my-body end – a procedure decl.

 such that

 pre prc-call and-k prc-rei :

 call MyClass.myProc (val apa-f ref apa-r) – is correct (final task)

 post poc-call

the main challenge is to build a correct metaprogram

 pre prc-body : my-body post poc-body

appropriately related to the call

construction rule

A procedural programmer’s step (2)

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 6

prc-call  myProc (val fpa-v ref fpa-r) my-body imperative in MyClass

prc-call  (pass actual val apa-v ref apa-r to formal val fpa-v ref fpa-r with MyClass) @

 prc-body

prc-call  procedure MyClass.myProc is opened

prc-call  coe is current

prc-body  my-body @ poc-body i.e. pre prc-body : my-body post poc-body

poc-body  fpa-r well-valued in coe

poc-body[fpa-r/apa-r]  poc-call

pre prc-call :

call MyClass.myProc (val apa-v ref apa-r)

post poc-call

Lemma 9.4.6-4 Rule for a call of an imperative procedure

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 7

An example of a program development

pre n, q, y, p is nnint:

 q := 1;

 while q ≤ n do q:=4*q od

 y:= n;

 p:= 0;

 while q > 1

 do

 q:=q/4;

 if p+q ≤ y

 then p:=p+q; y:=y-p-q

 else p:=p/2

 fi

 od

post p=isrt(n)

Ole-Johan Dahl

1931 – 2002

Turing Award winner 2001

integer square root

non-negative integer

Def: isrt(n)2 ≤ n < (isrt(n)+1)2

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 8

Building a searching engine

pre x = 0 and-k k is nnint :

 while x+1 ≤ k

 do x := x+1 od

post x = k

The application of the rule:

inv: 0 ≤ x ≤ k

1) pre 0 ≤ x ≤ k and-k x+1 ≤ k : x := x+1 post 0 ≤ x ≤ k

2) limited replicability of (asr x+1 ≤ k rsa ; x := x+1) if 0 ≤ x ≤ k

3) x = 0 and-k k is nnint  0 ≤ x ≤ k

4) 0 ≤ x ≤ k  x+1 ≤ k or-k (not x+1 ≤ k)

5) 0 ≤ x ≤ k and-k (not x+1 ≤ k)  x = k

1) pre (inv and-k vex) : sin post inv

2) limited replicability of (asr vex rsa ; sin) if inv

3) prc  inv

4) inv  (vex or-k (not-k vex))

5) inv and-k (not-k vex))  poc

pre prc : while vex do sin od post poc

Rule to be applied

pre k is nnint

 x := 0 ;

 while x+1 ≤ k

 do x := x+1 od

post x = k

First goal

By sequential composition

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 9

Installing an appliance on the engine

pre k is nnint :

 x := 0;

 while x+1 ≤ k

 do x := x+1 od

post x = k

Linear search engine

A liner-time program

pre x,n is nnint :

 x := 0;

 asr x,n is nnint

 while (x+1)2 ≤ n

 do x := x+1 od

 rsa

post x = isrt(n)

x+1 ≤ isrt(n) ≡ (x+1)2 ≤ n whenever x,n is nnint

If we wish to speed up

our program, we have to

change the engine

pre x,n is nnint :

 x := 0;

 while x+1 ≤ isrt(n)

 do x := x+1 od

post x = isrt(n)

Applied rule: substitution

installing

an appliance

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 10

Step 1- building a logarithmic search engine

The magnitude of k: If 2m ≤ k < 2m+1 then mag.k = 2m e.g. mag.11 = 8

Def: po2.k iff (∃m≥0) k=2m : k is a power of 2

Q1: pre x, k, z is nnint :

z := 1;

asr x, k, z is nnint and-k po2.z :

while z ≤ k do z:=2*z od

rsa

 post x, k, z is nnint and-k z = 2*mag.k

searches for 2*mag.k e.g. 2*mag.11 = 16

Q2: pre x, k, z is nnint and-k z = 2*mag.k :

 x := 0;

 while z > 1

 do

 z := z/2;

 if x + z ≤ k then x:=x + z fi

 od

 post x = k and-k z = 1

k = 11

2*mag.11 = 16

11 = 1*8 + 0*4 + 1*2 + 1*1

Next step:

combine these programs

sequentially

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 11

Q3: pre x,k,z is nnint : a logarithmic search engine

 z := 1;

 x := 0; - assignment moved up

 asr x, k, z is nnint and-k po2.z : - the range of assertion extended down

 while z ≤ k do z:=2*z od

 while z > 1

 do

 z := z/2;

 if x + z ≤ k then x:=x + z fi

 od

 rsa

 post x = k and-k z = 1

Next step:

replace k by isrt(n) and use

z ≤ isrt(n) ≡ z2 ≤ n whenever z, n is nnint

x + z ≤ isrt(n) ≡ (x + z)2 ≤ n whenever z, n, x is nnint

Step 2 - combining programs sequentially

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 12

Step 3 – substitution and replacement

pre z,x,n is nnint:

 z := 1;

 x := 0

 asr z,x,n is nnint and-k po2.z :

 while z2 ≤ n do z:=2*z od

 while z > 1

 do

 z := z/2;

 if (x+z)2 ≤ n then x:=x+z fi

 od

 rsa

post x = isrt(n) and-k z = 1

Q4:

Next step:

To avoid the recalculation of z2 introduce a register variable

(1) Introduce new variable q with q=z2

(2) Introduce updates of q to keep q = z2 .

We time-optimize this

program by restricting the

number of executions of

arithmetic operations (time).

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 13

Step 4 – introducing of a register variable q

pre z, x, n, q is nnint:

 z := 1;

 x := 0;

 q := 1;

 asr z,x,n is nnint and-k po2.z and-k q=z2

 while q ≤ n do off z:=2*z; q:=4*q on od

 while z > 1

 do

 off z:=z/2; q:=q/4 on

 if x2+2*x*z+q ≤ n then x:=x+z fi

 od

 rsa

post x=isrt(n) and-k z=1 and-k q=z2

Q5:

Next step:

z>1 ≡ q>1 whenever (z>0 and-k q=z2)

new variables y and p with y=n-x2 and p=x*z

x2 + 2*x*z + q ≤ n ≡ 2*p+q ≤ y whenever (y=n-x2 and-k p=x*z)

register variable

register expression

register condition

assertion

switched off locally

The introduction of y and

p is an invention to be

justified later.

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 14

Step 5 – introducing register variables y, p

pre z, x, n, q, y, p is nnint:

 z := 1; x := 0; q := 1;

 asr z, x, n is nnint and-k q=z2 :

 while q ≤ n do off z:=2*z; q:=4*q on od

 y:= n;

 p:= 0;

 asr y=n-x2 and-k p=x*z :

 while q > 1

 do

 off z:=z/2; q:=q/4; p:=p/2; on

 if 2*p+q ≤ y then x:=x+z; p:=p+q; y:=y-2p-q fi

 od

 rsa

 rsa

post x = isrt(n) and-k z = 1 and-k q=z2 and-k p=x*z and-k y=n-x2

Q6:

q=z2  isrt(q)=z whenever z is nnint

We replace z by isrt(q) in order to

eliminate z in the next step.

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 15

Step 6 – introducing isrt(q)

pre z, x, n, q, y, p is nnint:

 z := 1; x := 0; q := 1;

 asr z, x, n is nnint and-k isrt(q)=z :

 while q ≤ n do off z:=2*isrt(q); q:=4*q on od

 y:= n;

 p:= 0;

 asr y=n-x2 and-k p=x*isrt(q) :

 while q > 1

 do

 off z:=isrt(q)/2; q:=q/4; p:=p/2 on

 if 2*p+q ≤ y

 then x:=x+isrt(q); p:=p+q; y:=y-2p-q

 fi

 od

 rsa

 rsa

post x=isrt(n) and-k z=1 and-k q=1 and-k p=x and-k y=n-x2

Q7:

since z=1

z can be removed because it

doesn't contribute to other

variables and we do not need

its terminal value.

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 16

Step 7 – eliminating z

pre x, n, q, y, p is nnint:

 x := 0; q := 1;

 asr x,n is nnint:

 while q ≤ n do q:=4*q od

 y:= n;

 p:= 0;

 asr y=n-x2 and-k p=x*isrt(q) :

 while q > 1

 do

 off q:=q/4; p:=p/2 on

 if 2*p + q ≤ y

 then p:=p+q; y:=y-2p-q

 fi

 od

 rsa

 rsa

post x=isrt(n) and-k q=1 and-k p=x and-k y=n-x2

Q8:

x=isrt(n) ≡ p=isrt(n) whenever p=x

after this

transformation x

becomes

unnecessary

we also remove assertions which we will not need
A

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 17

Step 8 – eliminating x

pre n, q, y, p is nnint:

 q := 1;

 while q ≤ n do q:=4*q od

 y:= n;

 p:= 0;

 while q > 1

 do

 q:=q/4;

 p:=p/2; if 2*p+q ≤ y then p:=p+q; y:=y-2p-q fi

 od

post p=isrt(n) and-k q=1

Q9:

A

replace by

if p+q ≤ y then p:=p/2+q; y:=y-p-q else p:=p/2 fi

May 10th, 2025 A.Blikle - Denotational Engineering; part 13 (19) 18

Step 9 – the Dahl’s program

pre n, q, y, p is nnint:

 q := 1;

 while q ≤ n do q:=4*q od

 y:= n;

 p:= 0;

 while q > 1

 do

 q:=q/4;

 if p+q ≤ y

 then p:=p+q; y:=y-p-q

 else p:=p/2

 fi

 od

post p=isrt(n)

Q10:

A

All arithmetic operations are easily

implementable in binary arithmetic.

May 10th, 2025 19A.Blikle - Denotational Engineering; part 13 (19)

Thank you for

your attention

	Sekcja domyślna
	Slajd 1: Lingua Project (13) Metaprograms’ development in Lingua (2) (Sec. 9.4.6 and 9.5.1)
	Slajd 2: Rules for structured instructions
	Slajd 3: Rule for assignment instructions
	Slajd 4: A general programmer’s step
	Slajd 5: A procedural programmer’s step (1)
	Slajd 6: A procedural programmer’s step (2)
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19

